Enamine and SyntheticGestalt to Collaborate on the Creation of AI-Based Model to Facilitate Drug Discovery
KYIV, UKRAINE , January 11, 2024 /EINPresswire.com/ -- ๐๐บ๐ฏ๐ต๐ฉ๐ฆ๐ต๐ช๐ค๐๐ฆ๐ด๐ต๐ข๐ญ๐ต ๐ธ๐ช๐ญ๐ญ ๐ฅ๐ฆ๐ท๐ฆ๐ญ๐ฐ๐ฑ ๐ข ๐ฑ๐ณ๐ฆ-๐ต๐ณ๐ข๐ช๐ฏ๐ฆ๐ฅ ๐๐ ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ ๐ต๐ฐ ๐ฅ๐ช๐ด๐ค๐ฐ๐ท๐ฆ๐ณ ๐ด๐บ๐ฏ๐ต๐ฉ๐ฆ๐ด๐ช๐ป๐ข๐ฃ๐ญ๐ฆ ๐ฅ๐ณ๐ถ๐จ-๐ญ๐ช๐ฌ๐ฆ ๐ฉ๐ช๐ต ๐ค๐ข๐ฏ๐ฅ๐ช๐ฅ๐ข๐ต๐ฆ๐ด. ๐๐ฉ๐ช๐ด ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ ๐ธ๐ช๐ญ๐ญ ๐ถ๐ต๐ช๐ญ๐ช๐ป๐ฆ 38 ๐ฃ๐ช๐ญ๐ญ๐ช๐ฐ๐ฏ ๐ค๐ฐ๐ฎ๐ฑ๐ฐ๐ถ๐ฏ๐ฅ๐ด ๐ง๐ณ๐ฐ๐ฎ ๐๐ฏ๐ข๐ฎ๐ช๐ฏ๐ฆ ๐๐๐๐ ๐ฅ๐ข๐ต๐ข๐ฃ๐ข๐ด๐ฆ ๐ข๐ด ๐ข ๐ฅ๐ข๐ต๐ข๐ด๐ฆ๐ต ๐ง๐ฐ๐ณ ๐ฑ๐ณ๐ฆ-๐ต๐ณ๐ข๐ช๐ฏ๐ช๐ฏ๐จ.
SyntheticGestalt, a research and development company specializing in the application of AI to the life sciences domain, and Enamine, the worldโs leading provider of chemical building blocks, screening compounds, and integrated drug discovery services, have announced the start of a joint effort to create a suite of AI models that will enable the generation of synthetically accessible biologically active compounds with optimized physicochemical and ADME/ Tox properties. The models will be applicable to the compound discovery initiatives of SyntheticGestalt, as well as its service for both academic users and pharmaceutical companies.
Enamine will provide access to its largest enumerated database of make-on-demand compounds, Enamine REAL database, which has 38 billion molecules in its current edition. SyntheticGestalt will add the REAL database to its Drug Discovery Service, which uses proprietary AI models to provide predictions on physicochemical and ADME/ Tox properties of compounds. For compounds with issues, the service proposes improved alternative compounds instantaneously.
Enamine will synthesize the selected compounds within just 3-4 weeks and provide quality pharmacological ๐๐ ๐ฃ๐๐ก๐๐ profiling data through the in-house tests to streamline and shorten the discovery cycle.
Furthermore, SyntheticGestalt will enhance its pre-trained AI model using the data provided by Enamine. It is expected to become the largest pre-trained model in the world based on the 3D structures of the compounds, to improve the predictive accuracy of SyntheticGestaltโs machine learning models. The resulting models will be offered on a joint research basis to certain interested parties. The pre-trained AI model and its performance will be presented at NVIDIAโs annual event, NVIDIA GTC Japan AI Day, in March of 2024.
๐๐๐ซ๐จ๐ฌ๐ฅ๐๐ฏ๐ ๐๐จ๐ฌ, ๐๐ข๐ซ๐๐๐ญ๐จ๐ซ ๐จ๐ ๐๐ฎ๐ฌ๐ข๐ง๐๐ฌ๐ฌ ๐๐๐ฏ๐๐ฅ๐จ๐ฉ๐ฆ๐๐ง๐ญ at ๐๐ง๐๐ฆ๐ข๐ง๐ commented: โ๐๐ฉ๐ฆ ๐ฑ๐ณ๐ฐ๐ฎ๐ช๐ด๐ฆ ๐ฑ๐ณ๐ฐ๐ท๐ช๐ฅ๐ฆ๐ฅ ๐ฃ๐บ ๐๐/๐๐ ๐ฑ๐ฐ๐ธ๐ฆ๐ณ๐ฆ๐ฅ ๐ค๐ฐ๐ฎ๐ฑ๐ถ๐ต๐ข๐ต๐ช๐ฐ๐ฏ๐ข๐ญ ๐ฅ๐ฆ๐ด๐ช๐จ๐ฏ๐ด ๐ช๐ฏ ๐ต๐ฉ๐ฆ ๐ฅ๐ช๐ด๐ค๐ฐ๐ท๐ฆ๐ณ๐บ ๐ฐ๐ง ๐ฏ๐ฆ๐ธ ๐ฅ๐ณ๐ถ๐จ๐ด ๐ค๐ข๐ฏ๐ฏ๐ฐ๐ต ๐ฃ๐ฆ ๐ถ๐ฏ๐ฅ๐ฆ๐ณ๐ฆ๐ด๐ต๐ช๐ฎ๐ข๐ต๐ฆ๐ฅ. ๐๐ช๐ฏ๐ฅ๐ช๐ฏ๐จ ๐ฏ๐ฆ๐ธ ๐ข๐ค๐ต๐ช๐ท๐ฆ ๐ค๐ฐ๐ฎ๐ฑ๐ฐ๐ถ๐ฏ๐ฅ๐ด ๐ฃ๐บ ๐ด๐บ๐ฏ๐ต๐ฉ๐ฆ๐ด๐ช๐ด ๐ฐ๐ง ๐ซ๐ถ๐ด๐ต ๐ข ๐ฉ๐ข๐ฏ๐ฅ๐ง๐ถ๐ญ ๐ฐ๐ง ๐ฏ๐ฐ๐ท๐ฆ๐ญ ๐ค๐ฐ๐ฎ๐ฑ๐ฐ๐ถ๐ฏ๐ฅ๐ด ๐ญ๐ฐ๐ฐ๐ฌ๐ด ๐ง๐ข๐ฏ๐ต๐ข๐ด๐ต๐ช๐ค. ๐๐ฆ ๐ข๐ณ๐ฆ ๐ฑ๐ญ๐ฆ๐ข๐ด๐ฆ๐ฅ ๐ต๐ฐ ๐ฆ๐ฏ๐ต๐ฆ๐ณ ๐ค๐ฐ๐ญ๐ญ๐ข๐ฃ๐ฐ๐ณ๐ข๐ต๐ช๐ฐ๐ฏ ๐ธ๐ช๐ต๐ฉ ๐๐บ๐ฏ๐ต๐ฉ๐ฆ๐ต๐ช๐ค๐๐ฆ๐ด๐ต๐ข๐ญ๐ต ๐ฃ๐ณ๐ช๐ฏ๐จ๐ช๐ฏ๐จ ๐ต๐ฐ ๐ต๐ฉ๐ฆ ๐ต๐ข๐ฃ๐ญ๐ฆ ๐ต๐ฉ๐ฆ ๐ต๐ข๐ญ๐ฆ๐ฏ๐ต ๐ข๐ฏ๐ฅ ๐ฆ๐น๐ฑ๐ฆ๐ณ๐ต๐ช๐ด๐ฆ ๐ฐ๐ง ๐ฐ๐ถ๐ณ ๐ด๐ค๐ช๐ฆ๐ฏ๐ต๐ช๐ด๐ต๐ด ๐ต๐ฐ ๐ณ๐ฆ๐ข๐ญ๐ช๐ป๐ฆ ๐ฎ๐ถ๐ต๐ถ๐ข๐ญ ๐จ๐ฐ๐ข๐ญ๐ด. ๐๐ฆ ๐ญ๐ฐ๐ฐ๐ฌ ๐ง๐ฐ๐ณ๐ธ๐ข๐ณ๐ฅ ๐ต๐ฐ ๐ซ๐ฐ๐ช๐ฏ๐ช๐ฏ๐จ ๐ฆ๐ง๐ง๐ฐ๐ณ๐ต๐ด ๐ต๐ฐ๐ธ๐ข๐ณ๐ฅ๐ด ๐ต๐ฉ๐ฆ ๐ญ๐ฐ๐ฏ๐จ-๐ฅ๐ฆ๐ด๐ช๐ณ๐ฆ๐ฅ ๐ต๐ฉ๐ฆ๐ณ๐ข๐ฑ๐ฆ๐ถ๐ต๐ช๐ค๐ด.โ
๐๐จ๐ค๐ข ๐๐ก๐ข๐ฆ๐๐๐, ๐๐๐ at ๐๐ฒ๐ง๐ญ๐ก๐๐ญ๐ข๐๐๐๐ฌ๐ญ๐๐ฅ๐ญ commented: โ๐๐ฉ๐ฆ ๐ถ๐ด๐ฆ ๐ฐ๐ง ๐ฎ๐ข๐ค๐ฉ๐ช๐ฏ๐ฆ ๐ญ๐ฆ๐ข๐ณ๐ฏ๐ช๐ฏ๐จ ๐ช๐ฏ ๐ฅ๐ณ๐ถ๐จ ๐ฅ๐ช๐ด๐ค๐ฐ๐ท๐ฆ๐ณ๐บ ๐ณ๐ฆ๐ด๐ฆ๐ข๐ณ๐ค๐ฉ ๐ฉ๐ข๐ด ๐ญ๐ฐ๐ฏ๐จ ๐ฃ๐ฆ๐ฆ๐ฏ ๐ฑ๐ญ๐ข๐จ๐ถ๐ฆ๐ฅ ๐ฃ๐บ ๐ต๐ฉ๐ฆ ๐ฑ๐ณ๐ฐ๐ฃ๐ญ๐ฆ๐ฎ ๐ฐ๐ง ๐ฉ๐ช๐จ๐ฉ ๐ฑ๐ฆ๐ณ๐ง๐ฐ๐ณ๐ฎ๐ข๐ฏ๐ค๐ฆ ๐ฐ๐ฏ ๐ต๐ณ๐ข๐ช๐ฏ๐ช๐ฏ๐จ ๐ฅ๐ข๐ต๐ข ๐ฃ๐ถ๐ต ๐ญ๐ฐ๐ธ ๐ฑ๐ฆ๐ณ๐ง๐ฐ๐ณ๐ฎ๐ข๐ฏ๐ค๐ฆ ๐ช๐ฏ ๐ข๐ค๐ต๐ถ๐ข๐ญ ๐ถ๐ด๐ฆ. ๐๐ฐ ๐ด๐ฐ๐ญ๐ท๐ฆ ๐ต๐ฉ๐ช๐ด ๐ฑ๐ณ๐ฐ๐ฃ๐ญ๐ฆ๐ฎ, ๐ช๐ต ๐ช๐ด ๐ฏ๐ฆ๐ค๐ฆ๐ด๐ด๐ข๐ณ๐บ ๐ต๐ฐ ๐ฅ๐ฆ๐ท๐ฆ๐ญ๐ฐ๐ฑ ๐ฑ๐ณ๐ฆ-๐ต๐ณ๐ข๐ช๐ฏ๐ช๐ฏ๐จ ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ๐ด ๐ถ๐ด๐ช๐ฏ๐จ ๐ฅ๐ข๐ต๐ข ๐ต๐ฉ๐ข๐ต ๐ธ๐ช๐ญ๐ญ ๐ฃ๐ฆ ๐ถ๐ด๐ฆ๐ฅ ๐ช๐ฏ ๐ณ๐ฆ๐ข๐ญ-๐ธ๐ฐ๐ณ๐ญ๐ฅ ๐ข๐ฑ๐ฑ๐ญ๐ช๐ค๐ข๐ต๐ช๐ฐ๐ฏ๐ด. ๐๐ฉ๐ฆ ๐๐ฏ๐ข๐ฎ๐ช๐ฏ๐ฆ ๐๐๐๐ ๐ฅ๐ข๐ต๐ข๐ฃ๐ข๐ด๐ฆ ๐ช๐ด ๐ต๐ฉ๐ฆ ๐ฑ๐ฆ๐ณ๐ง๐ฆ๐ค๐ต ๐ฎ๐ข๐ต๐ค๐ฉ ๐ง๐ฐ๐ณ ๐ฐ๐ถ๐ณ ๐ช๐ฏ๐ช๐ต๐ช๐ข๐ต๐ช๐ท๐ฆ ๐ข๐ด ๐ต๐ฉ๐ฆ ๐ฎ๐ฐ๐ด๐ต ๐ต๐ณ๐ถ๐ด๐ต๐ฆ๐ฅ ๐ข๐ฏ๐ฅ ๐ต๐ฉ๐ฆ ๐ญ๐ข๐ณ๐จ๐ฆ๐ด๐ต ๐ฎ๐ข๐ฌ๐ฆ-๐ฐ๐ฏ-๐ฅ๐ฆ๐ฎ๐ข๐ฏ๐ฅ ๐ด๐ฆ๐ต ๐ฐ๐ฏ ๐ต๐ฉ๐ฆ ๐ฎ๐ข๐ณ๐ฌ๐ฆ๐ต. ๐๐ฆ ๐ฃ๐ฆ๐ญ๐ช๐ฆ๐ท๐ฆ ๐ต๐ฉ๐ข๐ต ๐ต๐ฉ๐ฆ ๐ถ๐ญ๐ต๐ณ๐ข-๐ญ๐ข๐ณ๐จ๐ฆ ๐ฑ๐ณ๐ฆ-๐ต๐ณ๐ข๐ช๐ฏ๐ฆ๐ฅ ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ ๐ธ๐ฆ ๐ข๐ณ๐ฆ ๐ฅ๐ฆ๐ท๐ฆ๐ญ๐ฐ๐ฑ๐ช๐ฏ๐จ ๐ธ๐ช๐ญ๐ญ ๐ฆ๐ฏ๐ข๐ฃ๐ญ๐ฆ ๐ข ๐ค๐ฐ๐ด๐ฎ๐ช๐ค ๐ญ๐ฆ๐ข๐ฑ ๐ช๐ฏ ๐๐ ๐ฅ๐ณ๐ถ๐จ ๐ฅ๐ช๐ด๐ค๐ฐ๐ท๐ฆ๐ณ๐บ, ๐ซ๐ถ๐ด๐ต ๐ข๐ด ๐ต๐ฉ๐ฆ ๐ญ๐ข๐ณ๐จ๐ฆ-๐ด๐ค๐ข๐ญ๐ฆ ๐ฑ๐ณ๐ฆ-๐ต๐ณ๐ข๐ช๐ฏ๐ช๐ฏ๐จ ๐ฎ๐ข๐ฅ๐ฆ ๐ข ๐ณ๐ฆ๐ท๐ฐ๐ญ๐ถ๐ต๐ช๐ฐ๐ฏ ๐ช๐ฏ ๐๐ข๐ณ๐จ๐ฆ ๐๐ข๐ฏ๐จ๐ถ๐ข๐จ๐ฆ ๐๐ฐ๐ฅ๐ฆ๐ญ๐ด (๐๐๐๐ด).โ
๐๐๐๐
๐๐๐จ๐ฎ๐ญ ๐๐ฒ๐ง๐ญ๐ก๐๐ญ๐ข๐๐๐๐ฌ๐ญ๐๐ฅ๐ญ
SyntheticGestalt is an artificial intelligence research and development company specialising in AI drug discovery and other life science fields. Its research and development are focused on the discovery of useful substances using its independently developed artificial intelligence technology. The AI platform used in this research has a cloud-based, scalable structure and can make predictions on large libraries, making it possible to predict physicochemical and ADME/ Tox properties and early toxicity, as well as enzyme functions. SyntheticGestalt welcomes open innovation through joint research with public institutions and private companies. For more information visit: https://syntheticgestalt.com
๐๐๐จ๐ฎ๐ญ ๐ญ๐ก๐ ๐๐ฒ๐ง๐ญ๐ก๐๐ญ๐ข๐๐๐๐ฌ๐ญ๐๐ฅ๐ญ ๐๐ซ๐ฎ๐ ๐๐ข๐ฌ๐๐จ๐ฏ๐๐ซ๐ฒ ๐๐๐ซ๐ฏ๐ข๐๐
SyntheticGestalt offers a web service specifically aimed at proposing solutions to ADME/ Tox and physicochemical problems of Hit ~ Lead compounds, based on its proprietary machine learning models. The service is available for trial from the following link: https://drugdiscovery.syntheticgestalt.com/
๐๐๐จ๐ฎ๐ญ ๐๐ง๐๐ฆ๐ข๐ง๐
Enamine is a scientifically driven integrated discovery Contract Research Organisation with unique partnering opportunities in exploring new chemical space. The company combines access to the in-house produced screening compounds (4M in stock) and building blocks (300K in stock) with a comprehensive platform of integrated discovery services to advance and accelerate the efforts in Drug Discovery. For more information visit: https://enamine.net
๐๐๐จ๐ฎ๐ญ ๐๐ง๐๐ฆ๐ข๐ง๐ ๐๐๐๐ ๐๐๐ญ๐๐๐๐ฌ๐
Enamine REALยฎ Database (๐๐adily ๐ccesib๐e) is a collection of over 38 billion enumerated molecules that can be synthesized at Enamine extremely fast (3-4 weeks), with high feasibility (over 80%), and inexpensive. The REAL compounds are created by parallel chemistry through the compilation of 137,000 building blocks via 167 different synthesis protocols, underlying Enamineโs approach to design make-on-demand compounds to maximize synthesis success rate.
Iaroslava Kos
Enamine Ltd.
info@enamine.net
Legal Disclaimer:
EIN Presswire provides this news content "as is" without warranty of any kind. We do not accept any responsibility or liability for the accuracy, content, images, videos, licenses, completeness, legality, or reliability of the information contained in this article. If you have any complaints or copyright issues related to this article, kindly contact the author above.
