There were 1,395 press releases posted in the last 24 hours and 443,765 in the last 365 days.

Multi-proxy record of the mid-Maastrichtian event in the European Chalk Sea: paleoceanographic implications

Multi-proxy record of the mid-Maastrichtian event in the European Chalk Sea: paleoceanographic implications

Published 13 December 2023 Science Leave a Comment
Tags: Baltic, chemistry, field, paleo, sediment

The Cretaceous provides us with an excellent case history of ocean-climate-biota system perturbations. Such perturbations occurred several times during the Cretaceous, such as oceanic anoxic events and the end-Cretaceous mass extinction, which have been the subject of an abundant literature. Other perturbations, such as the mid-Maastrichtian Event (MME) remain poorly understood. The MME was associated with global sea-level rise, changes in climate and deep-water circulation that were accompanied by biotic extinctions including “true” inoceramids and the demise of the Caribbean-Tethyan rudist reef ecosystems. So far, the context and causes behind the MME remain poorly studied. We conducted high-resolution integrated biotic, petrological and geochemical studies in order to fill this knowledge gap. We studied, in particular, carbonate Nd and Os isotopes, whole-rock Hg, C and N content, C and N isotopes in organic matter, SCAS isotopes, along with C and O isotopes from foraminifera from the European Chalk Sea: the Polanówka UW-1 core from Poland and the Stevns-1 core from Denmark. Our data showed that sea-level rise of ∼50-100 m lasted around ∼2 Ma and co-occurred with anomalously high mercury concentration. Along with previously published data, our results strongly suggest that the MME was driven by intense volcanic–tectonic activity, likely related to the production of vast oceanic plateaus (LIP, Large Igneous Province). The collapse of reef ecosystems could have been the consequence of LIP-related environmental stress factors, including climate warming, presumably caused by emission of greenhouse gases, modification of the oceanic circulation, oceanic acidification and/or toxic metal input. The disappearance of the foraminifer Stensioeina lineage on the European shelf was likely caused by the collapse of primary production triggered by sea-level rise and limited amount of nutrient input. Nd isotopes and foraminiferal assemblages attest for changes in sea-water circulation in the European Shelf and the increasing contribution of North Atlantic water masses.

Dubicka Z., Wierny W., Bojanowski M. J., Rakociński M., Walaszczyk I. & Thibault N., in press. Multi-proxy record of the mid-Maastrichtian event in the European Chalk Sea: paleoceanographic implications. Gondwana Research. Article (subscription required).

Like this:

Like Loading...

Related

Legal Disclaimer:

EIN Presswire provides this news content "as is" without warranty of any kind. We do not accept any responsibility or liability for the accuracy, content, images, videos, licenses, completeness, legality, or reliability of the information contained in this article. If you have any complaints or copyright issues related to this article, kindly contact the author above.