UCLA researchers' new technique improves accuracy, ease of cancer diagnosis
A team of researchers from UCLA and Harvard University have demonstrated a technique that, by measuring the physical properties of individual cells in body fluids, can diagnose cancer with a high degree of accuracy.
Pleural fluid, a natural lubricant of the lungs as they expand and contract during breathing, is normally present in spaces surrounding the lungs. Medical conditions such as pneumonia, congestive heart failure and cancer can cause an abnormally large buildup of the fluid, which is called a pleural effusion.
When cytopathologists screen for cancer in pleural effusions, they perform a visual analysis of prepared cells extracted from the fluid. Preparing cells for this analysis can involve complicated and time-consuming dyeing or molecular labeling, and the tests often do not definitively determine the presence of tumor cells. As a result, additional costly tests often are required.
Imagine squeezing two balloons, one filled with water and one filled with honey. The balloons would feel different and would deform differently in your grip. The researchers used this principle on the cellular level by using a fluid grip to "squeeze" individual cells that are 10,000 times smaller than balloons—a technique called "deformability cytometry." The amount of a cell’s compression can provide insights about the cell's makeup or structure, such as the elasticity of its membrane or the resistance to flow of the DNA or proteins inside it. Cancer cells have a different architecture and are softer than healthy cells and, as a result, "deform" differently.
Using deformability cytometry, researchers can analyze more than 1,000 cells per second as they are suspended in a flowing fluid, providing significantly more detail on the variations within each patient's sample than could be detected using previous physical analysis techniques.
The researchers also noted that the more detailed information they obtained improved the sensitivity of the test: Some patient samples that were not identified as cancerous via traditional methods were found to be so through deformability cytometry. These results were verified six months later.
"First, it may increase diagnostic accuracy for the detection of cancer cells in body fluid samples," Rao said. "Second, it may provide a method of initial screening for cancer in body fluid samples in places with limited resources or a lack of experienced cytologists. Third, it may provide a test to determine the drug sensitivity of cancer cells."
Rao added that additional large-scale clinical studies are needed to further validate this technique for each of those applications.
Di Carlo and Rao are members of the UCLA Jonsson Comprehensive Cancer Center, and of the California NanoSystems Institute at UCLA.
The paper's lead author was Henry TK Tse, a postdoctoral scholar in bioengineering at UCLA.
Other co-authors included Daniel R. Gossett and Mahdokht Masaeli of UCLA's department of bioengineering; and Dr. Marie Sohsman, Yong Ying and Dr. Kimberly Mislick of UCLA's department of pathology and laboratory medicine.
Legal Disclaimer:
EIN Presswire provides this news content "as is" without warranty of any kind. We do not accept any responsibility or liability for the accuracy, content, images, videos, licenses, completeness, legality, or reliability of the information contained in this article. If you have any complaints or copyright issues related to this article, kindly contact the author above.
