

3D Liver Models: How Creative Biolabs Brings 'Miniature Livers' to Life in the Lab

With recent progress in 3D liver spheroid models, "miniature livers" can now thrive inside the lab—an area where Creative Biolabs has been actively involved.

SHIRLEY, NY, UNITED STATES,
November 14, 2025 /
EINPresswire.com/ -- For more than a
decade, liver disease research and
drug toxicity testing have been
constrained by a persistent
limitation—traditional 2D cell cultures
are simply too "flat." Cells grown on a
dish cannot mimic the intricate
structure and dynamic interactions of
real tissue.

From Flat to Spatial: The Second Awakening of Liver Research Transitioning from planar to spatial systems represents what many

researchers call the second awakening in hepatology. The most recent innovation is the <u>3D</u> <u>hepatic stellate cell-endothelial cell spheroid model</u>, which co-cultures these two important cell types, allowing researchers to recreate vascular and matrix interactions of hepatic microarchitecture in a three-dimensional environment.

The model allows precise observation of angiogenesis, cellular migration, and fibrosis progression—key processes previously inaccessible in 2D systems. This advancement makes it possible to examine chronic liver diseases, cirrhosis, and steatohepatitis in a more physiological context.

A New Standard for Hepatotoxicity Evaluation

Another milestone is the <u>3D hepatocyte-stellate cell co-culture model</u>, a miniature tissue system that combines the liver's metabolic engine (hepatocytes) with the primary driver of fibrosis

(stellate cells). This model does not only capture drug processing metabolic pathways, but also follows the timing of toxic responses and predicts drug-induced liver injury (DILI) earlier. Furthermore, for pharmaceutical firms, it serves as a "warning radar" to flag high-risk compounds before animal testing begins.

At the mechanistic level, the <u>3D human stellate cell monoculture spheroid model</u> is a purer and more controlled system for investigating fibrosis. By tracking spontaneous activation of a single cell type in a 3D environment, researchers can isolate the first stages of hepatic fibrosis and identify potential therapeutic targets. This allows for mechanism validation and anti-fibrotic drug discovery.

Bringing In Vitro Systems Closer to the Human Body

"We are not just creating beautiful 3D structures—we are building models that think," a senior scientist at Creative Biolabs stated. "Our liver spheroid systems reveal how real tissues behave under drug stimulation—the crosstalk between cells, the onset of fibrosis, and the dynamic regulation of metabolic enzymes. These are living behaviors that flat cultures can never reproduce."

Creative Biolabs' 3D biology platform extends far beyond hepatic systems. The company has developed neural and respiratory models, with other tissue-on-a-chip customizable models. Each evolving model is intended to represent a controllable, reproducible, and predictive "miniature human" that can be the basis for experimental drug screening, toxicology, and testing in regenerative medicine.

About

Through the 3D biology platform, Creative Biolabs will continue to innovate customized in vitro models that provide multi-level research support to scientists and pharmaceutical partners globally interested in complex biological systems.

Candy Swift
Creative Biolabs
+1 631-830-6441
marketing@creative-biolabs.com

This press release can be viewed online at: https://www.einpresswire.com/article/866764952

EIN Presswire's priority is source transparency. We do not allow opaque clients, and our editors try to be careful about weeding out false and misleading content. As a user, if you see something we have missed, please do bring it to our attention. Your help is welcome. EIN Presswire, Everyone's Internet News Presswire™, tries to define some of the boundaries that are reasonable in today's world. Please see our Editorial Guidelines for more information.

© 1995-2025 Newsmatics Inc. All Right Reserved.